PEOPLE'S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

HARMONIZATION

MASTER TRAINING OFFER

ACADEMIC/PROFESSIONAL

Establishment	Faculty / Institute	Department
Mohamed Khider University	Faculty of Exact Sciences and Natural and Life Sciences	Agricultural sciences

Domain :Natural and life sciences

Sector : Agronomy

Specialty: Phoeniciculture and Phœniciculture TechniquesDates

Academic year: 2016/2017

الجمهورية الجزائرية الديمقر اطية الشعبية

وزارةالتعليم العالمى والبحث العلمى

مواءمة

عرضتكوين ماستر

أكاديمي/مهني

القسم	الكلية/ المعهد	المؤسسة
العلوم الزراعية	كلية العلوم الدقيقة و علوم الطبيعة و الحياة	جامعة محمد خيضر

الميدان: علوم الطبيعة و الحياة

الشعبة: : الزراعة

التخصص: زراعة النخيل وتقنيات تثمين التمور

السنة الجامعية:2016/2017

SUMMARY

 I - Master's identity sheet					
4 - Human resources available HAS -Teachers working in the specialty B-External supervision					
 5 - Specific material resources available A - Educational Laboratories and Equipment B- Internship sites and in-company training C - Research laboratories supporting the master's degree D - Research projects supporting the master's degree E - Personal work spaces and ICT					
II - Half-yearly teaching organization sheet 1- Semester 1 2- Semester 2 3- Semester 3 4- Semester 4 5- Overall summary of the training					
III - Detailed program by subject					
IV – Agreements / conventions					

I – Master's identity sheet (All fields must be completed)

1 - Location of the training:

Faculty (or Institute): Exact Sciences and Sciences of Nature and Life Department: Agricultural Sciences

2- Training partners *:

- other university establishments:

University of Batna, University of Annaba, ENSA of Elharrach

- businesses and other socio-economic partners:

CRSTRA--ITDAS--DSA--INPV—INRAA -EAC- EAI- DGF- -CRBt-ITGC- ONA batna- ONID

Farmers; Date packaging units

- International partners:

Universities and research institutes, CIRAD FRANCE. University of RENNE; PADOVA ITALY University;

* = Present the conventions in the appendix to the training

3 - Context and objectives of the training

- A Access conditions(indicate the license specialties which can give access to the Master)
 - Academic degree in arido-culture and environment
 - Professional or academic degree in Agronomy
 - Professional or academic degree Biology option: plant physiology
 - Professional or academic degree in environmental sciences
 - Other licenses accepted, upon study of the file and agreement of the educational

committee

B - **Training objectives**(*skills targeted, educational knowledge acquired at the end of the training - maximum 20 lines*)

The date palm constitutes the original culture of oasis environments where the total number is of the order of 18 million with 4.3 million date palms located in the Ziban oases. This Phoenicicultural potential, which constitutes ecological, agronomic and socio-economic wealth, currently faces several challenges; requires training programs; development and research with the aim of preserving and promoting this national Phoenicicultural heritage.

With this in mind, the opening of specialized training in phoeniciculture in the Ziban region becomes essential to respond to the major concerns of phoeniciculture, namely: the management of water and soil salinity, phytosanitary problems and the improvement qualitative and quantitative of date production. Also the practice of monoculture and single variety (Deglet Nour variety) and agricultural changes have accentuated genetic erosion, which deserves particular attention to fight against the erosion of this biodiversity.

The major objectives of this training are to have specialists in phoeniciculture capable of meeting the needs of this sector by promoting research in the fields of genetics, conservation and national and international marketing in order to ensure oasis agricultural activity. sustainable.

Following the master's course in phoeniciculture, the program provides the tools for the production, protection and sustainable preservation of date palm plant genetic resources; as well as valorization techniques, technological transformation of dates and marketing approaches.

At the end of the theoretical year, these major themes must have been addressed either in the form of courses or conferences, or in the form of tutorials, or in the form of internships and corrected personal work. This will allow students to understand all facets related to their training. At the end of the course, students can deal with complex subjects linked to the development of the sector.

Finally ; These studies are necessary and provide researchers who will strengthen national and international investigations for the development of phoeniciculture.

C – Targeted job profiles and skills(*in matters of professional integration - maximum 20 lines*):

Knowledge transmitted

- Date production techniques.
- Techniques for combating date palm diseases and pests
- Conservation and multiplication processes for endangered cultivars
- Date processing
- Commercialization
- Agricultural extension

D- Regional and national employability potential of graduates

The Wilaya of Biskra is an agricultural center par excellence. Biskra dates are exported to Canada, Europe and the United States of America. The mastery of production techniques by future phoeniciculture executives trained at the level of the Agronomy department is essential to ensure the quality of agricultural production.

This training allows you to open up to the world of work in fields belonging to both the public and private sectors for the following applications:

- a) DSA Consulting Services.
- b) Quality control laboratories (agri-food products).
- c) Private agricultural sector
- d) Customs services for control of agricultural products

E – Gateways to other specialties

- Agricultural mechanization
- Plant protection
- Water and soil management
- Date valorization and processing technology

- Marketing and marketing

F – Training monitoring indicators

- Continuous monitoring and permanent monitoring of students' achievements in the form of written questions, reports and presentations.
- Exams at the end of each semester.
- Internship report at the end of the training cycle
- Seminars and scientific activities.

G – Supervisory capacity(give the number of students that can be supported)

4 – Human resources available

Last name First Name	Graduation diploma + Specialty	Diploma Post graduation + Specialty	Grade	Type of intervention *	Registration
BELHAMRA Mohamed	Ecology	Ecology	Pr.		
TARAI Nacer	Agricultural zoology	Agricultural zoology	MCA		
BENAZIZA Abdelaziz	Phytotechnics	Phytotechnics	MCA		
DEGHNOUCHE Kahramen	Veterinarian	Veterinarian	MCA		
BENZIOUCHE Saleh	Economy and rural development	Economy and rural development	MCA		
MASMOUDI Ali	Soil science	Soil science	MCA		
DEMNATI Fatma	Forest	Forest	MCA		
BOUMAARAF Belgacem	Soil science	Soil science	MCA		
ACHOURA Amar	Agricultural zoology	Agricultural zoology	MCA		
BOUKHALFA Hassinahafida	Agricultural machinery	Agricultural machinery	MCA		
BECHAR M. Farouk	Soil biology	Soil biology	MCA		
MEHAOUA M.Seghir	Protection	Protection	MCA		
BOUKEHIL Khaled	Agricultural machinery	Agricultural machinery	MAA		
DJEKEREF Laala	Protection	Protection	MAA		
DJERAH Abdelghani	Phytotechnics	Phytotechnics	MAA		
KASSAI Abla	Soil science	Soil science	MAA		
KHACHAI Salim	Soil science	Soil science	MAA		
ALLACHE Farid	Agricultural zoology	Agricultural zoology	MAA		
BEDJAOUI Hanane	Phytotechnics	Phytotechnics	MAA		
GUIMER Kamal	Soil science	Soil science	MAA		
MABREK Naîma	Agricultural hydraulics	Agricultural hydraulics	MAA		
MELAKHSOU Zouhra	production		MAA		

A: Teachers from the establishment working in the specialty:

* = Courses, tutorials, practical work, internship supervision, dissertation supervision, other (to be specified)

B: External supervision:

Home establishment:

Last name First Name	Graduation diploma + Specialty	Diploma Post graduation + Specialty	Grade	Type of intervention *	Registration

Home establishment:

Last name First Name	Graduation diploma + Specialty	Diploma Post graduation + Specialty	Grade	Type of intervention *	Registration

Home establishment:

Last name First Name	Graduation diploma + Specialty	Diploma Post graduation + Specialty	Grade	Type of intervention *	Registration

* = Courses, tutorials, practical work, internship supervision, dissertation supervision, other (to be specified)

5 – Specific material resources available

A- Educational Laboratories and Equipment:Sheet of existing educational equipment for the practical work of the planned training (1 sheet per laboratory)

Laboratory title:Soil physics laboratory Student capacity:30

No	Equipment title	Numbe	observations
		r	
	Orbital shaker	02	
2	Mechanical stirrer	01	
3	Multi-parameter field analyzer (pH, conductivity, oximeter)	01	
4	Apparatus from Casa Grande	01	
5	Camera	01	
6	Sand bath 061	01	
7	Water bath	04	
8	Electronic scale with internal calibration, range 150g/65g	02	
9	Compass	01	
10	Munsell Charter	01	
11	Digital stopwatch	05	
12	Clinometer	01	
13	Membrane hydrometer	01	
14	Universal oven	04	
15	Ceramic plate extractor; Richard's device	01	
16	Muffle furnace	01	
17	GPS III Plus	01	
18	Auger kit for sampling heterogeneous soils	01	
19	Laboratory glassware washing	01	
20	Percussion penetrometer	01	
21	Fixed and variable head permeameter	01	
22	Polar digital planimeter	03	
23	Diaphragm pump	02	
24	Electronic total station with memory	01	
25	Pocket stereoscope.	08	
26	Folding mirror stereoscope	01	
27	HP designjet 800 plotter and scanner	01	
	Analytical sieve (gamma of 23 different		
28	mesh openings)	01	
29	Dial blood pressure monitor	01	
30	Electronic digital theodolite	01	

Laboratory title:Soil Chemistry Laboratory Student capacity:30

No	Equipment title	Numbe	observations
•	· · ·	r	
1	Heating magnetic stirrer	08	
2	BOD5 analyzer	01	
3	Device for studying pressure losses	01	
4	Bench-top autoclave	02	
5	Analytical balance, capacity 210g	03	
6	Precision balance, range 7200g	03	
7	Hydraulic bench	01	
8	Bunsen burner	30	
9	Plastic carboys capacity10 liters	30	
10	Mortar grinder	01	
11	Color CCD camera	01	
12	Yahita Benchtop Centrifuge	02	
13	Sigma Benchtop Centrifuge	01	
14	Colony counter	02	
15	Laboratory conductivity meter	03	
16	Water demineralization	01	
17	Ultrasonic disintegrator	01	
18	Vacuum Desiccator	05	
19	Water distiller	04	
20	Flow over a dam	01	
21	Drainer	03	
22	Thermostatic enclosure, internal	01	
22	temperature20°C	01	
23	Bernoulli's Theorem Proof Set	01	
24	Horizontal chamber kiln for ceramic firing	01	
25	Filter hood	02	
26	Refrigerated incubator	01	
27	Metro scope magnifying glass	05	
28	Elastic membrane manoscope	01	
20	Binocular microscope with camera and	01	
29	camera adapters	01	
30	Monocular microscope	10	
31	Mineralizer with heating block 06 stations	01	
22	Osborne Reynolds flow regime	01	
32	demonstration module	01	
33	Automatic level with straight optics	02	
34	Benchtop pH/mV meter	06	
35	Flame photometer	01	
36	Crucible tongs	30	
37	Atomic absorption photometer	01	
38	Plastic tray	10	
39	Hydrostatic pressure	01	

Establishment: Mohamed Khider University, Biskra Title of the master's degree: Phoeniciculture and date valorization techniques Academic year: 2016/2017:

40	Backpack sprayer	01	
41	Mineralization ramp	01	
42	Laboratory refrigerator	01	
43	UV-VIS spectrophotometer	03	
44	Automatic universal titrator	01	
45	Dissection kits	10	
46	Laboratory turbidimeter	01	
47	Nitrogen distillation unit 06 stations	01	

B- Internship sites and in-company training:

Training place	Number of students	Training period
ANRHConstantine/Algiers	10	07 days
BNEDERConstantine/Algiers	10	07 days
ONIDBISKRA	10	07 days
ITDAS BISKRA	10	07 days
INRABISKRA / ALGIERS	10	07 days
INPVBISKRA / ALGIERS	10	07 days
ONA BATNA	10	07 days

C- Master's support research laboratory(ies):

Head of the laboratory: BELHAM	RA Mohamed
Laboratory approval number: No. 8	37 of 04/14/2013

Date :

Opinion of the laboratory head: Ecosystem diversity and dynamics of agricultural production systems in arid zones

D- Master's support research project(s):

Title of the research project	Project code	Project start date	Project end date
CNEPRU projects: Techno-economic analysis of the date sector in the Zibans region (Biskra)	F0142010001 4	2010	2013
CNEPRU projects: Study and development of water and soil resources in the Saharan region	F01420090025	2010	2012
PNR projects: Trace chemical elements in groundwater intended for AEP and irrigation in the wilaya of Biskra	08/2011	2011	2013

E- Personal work spaces and ICT:

II – Half-yearly teaching organization sheet (Please present the forms for the 4 semesters)

1- Semester 1:

Tooching unit	VHS		Week	dy VH		coefficie	Cradita	Evaluation method	
leaching unit	14-16 weeks	VS	T.D.	TP	Others	nt	Credits	Continuous	Exam
Fundamental EU									
UEF1(O/P)	202.5								
Date palm pests	67.5	3h		1h30	82.5	3	6	50%	50%
Water and soil management in an					55				
oasis environment 1	45	1h30	1h30		55	2	4	50%	50%
UEF2(O/P)									
Biology of the date palm	45	1h30		1h30	55	2	4	50%	50%
Cultivation management of date					55				
palm 1	45	3h			55	2	4	50%	50%
EU methodology			-						
UEM1(O/P)									
Bio-statistics	37.5	1h30	1h		37.5	2	3	50%	50%
Oasis production system 1:					27 5				
Cereal farming	22.5	1h30/15d		1h30/15d	27.5	1	2	50%	50%
UEM2(O/P)									
Oasis production system 2:					27 5				
Fodder crops	22.5	1h30/15d		1h30/15d	27.5	1	2	50%	50%
Applied geomatics in agriculture	22.5	1h30/15d		1h30/15d	27.5	1	2	50%	50%
Discovery EU									
UED1(O/P)									
Oasis ecosystem	22.5	1h30			2.5	1	1	50%	50%
Transversal EU									
Communication	45	1h30	1h30		5	2	2	50%	50%
Total Semester1	375				375	17	30		

Establishment: Mohamed Khider University, Biskra Title of the master's degree: Phoeniciculture and date valorization techniques Academic year: 2016/2017

2- Semester 2:

Topohing unit	VHS		Week	ly VH		coefficie	Cradita	Evaluation method	
leaching unit	14-16 weeks	VS	T.D.	TP	Others	nt	Credits	Continuous	Exam
Fundamental EU			-						
UEF1(O/P)	202.5	135	22.5	45		4	18		
Cultivation management of date palm 2	45	3h			55	2	4	50%	50%
Integrated conservation of date palm plant genetic resources	45	1h30		1h30	55	2	4	50%	50%
UEF2(O/P)						5			
Water and soil management in an oasis environment 2	67.5	3	1h30		82.5	3	6	50%	50%
Date palm diseases	45	1h30		1h30	55	2	4	50%	50%
EU methodology	105					5	9		
UEM2(O/P)									
Oasis production system 3: Arboriculture	37.5	1h30		1h	37.5	2	3	50%	50%
Oasis production system 4: Plasticulture	45	1h30		1h30	55	2	4	50%	50%
Animal production in an oasis environment	22.5	1h30			27.5	1	2	50%	50%
UED2(O/P)	22.5	22.5				1	1		
Introduction to modeling	45	1h30	1h30		5	2	2	50%	50%
UET2(O/P)	45	22.5	22.5	0		2	2		
Legislation	22.5	1h30			2.5	1	1		
Total Semester 2	375					17	30		

3- Semester 3:

Tooching unit	VHS		Week	ly VH		coefficie	Cradita	Evaluation method	
	14-16 weeks	VS	T.D.	TP	Others	nt	Credits	Continuous	Exam
Fundamental EU									
UEF1(O/P)	202.5	90	22.5	45		9	18		
Valorization and processing technology	45	3h			55	2	4	50%	50%
Date palm architecture modeling	45	1h30		1h30	55	2	4	50%	50%
UEF2(O/P)									
Plant biotechnology and molecular tools applied to Palm	67.5	3h	1h30		82.5	3	6	50%	50%
Conservation and packaging of dates	45	1h30		1h30	55	2	4	50%	50%
EU methodology	105	67.5	0	0		5	9		
UEM1(O/P)									
Innovation in an oasis environment	37.5	1h30	1h		37.5	2	3	50%	50%
Instrumental analysis	45	1h30		1h30	55	2	4	50%	50%
UEM2(O/P)								50%	50%
Bibliographic search	22.5	1h30			27.5	1	2	50%	50%
Discovery EU									
UED1(O/P)	45	22.5	22.5		5	2	2		
Organic Agriculture	45	1h30	1h30		5	2	2	50%	50%
Transversal EU									
UET1(O/P)	22.5	22.5				1	1		
Entrepreneurship and project management	22.5	1h30			2.5	1	1	50%	50%
Total Semester 3	375					17	30		

4- Semester 4:

Field: Natural and life sciences

Sector: Agronomy

Speciality : Phoeniciculture and date valorization techniques

Internship in a company culminating in a dissertation and a defense.

	VHS	coefficient	Credits
Personal Work (Memory)	500*	10	20
Internship in	250**	5	10
company			
Seminars			
Other			
(Thesis/Internship)			
Total Semester4	750	15	30

^{*}UEF

5- Overall summary of the training:(indicate the separate global VH in progress, TD, for the 04 semesters of teaching, for the different types of EU)

EU V.H.	UEF	EMU	UED	UET	Total
Course	405	191.25	67.5	67.5	731.25
T.D.	67.5	30	45	22.5	165
ТР	135	93.75	0	0	228.75
Personal work	742.5	360	12.5	10	1125
other (explain, list,)	500	250	0	0	750
Total	1850	925	125	100	3000
Credits	74	37	5	4	120
% in credits for each EU	61.67	30.83	4.17	3.33	100

^{**}EMU

III - Detailed program by subject (1 detailed sheet per subject)

IV - Detailed program by subject (1 detailed sheet per subject)

S1

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UEF: Title of the subject:Date palm and date pests Credits: 6 Coefficients: 3

Teaching objectives This teaching will help the student to make a first approach to the biological study of insects. Morphological and bioecological criteria of insects and mites. Ultimately, our aim through this module is to train the student to understand an agronomic problem of a phytosanitary nature and to plan their own control protocol.

Recommended prior knowledge

- 1. Anatomical and morphological characteristics of insects and mites.
- 2. Plant-insect and host-parasite relationships.

Content of the subject

Chap.1 homoptera A: the white mealybug (Parlatoria blanchardi)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

Chap.2 beetles A: the palm borer (Apatemonachus)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

B: Red palm weevil (Rhyncophorusferrugineus)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

C: Dried fruit beetle (Carpophilushemipterus) and (C. dimidiotus)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

Chap.3 Lepidoptera A: The date moth (Ectomyelois ceratoniae)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

B: The palm butterfly(Paysandiaarchon)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

C: The Indian meal moth (Plodiainterpunctella)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

Chap.4 Mites

A: The Boufaroua (Oligonychusafrasiaticus)

- 1. classification
- 2. geographical distribution
- 3. bio-ecology
- 4. symptoms and damage
- 5. means of struggle

Chap.5 Pesticides

- 1. Classification, formulation and methods of application
- 2. Risks of pesticides for human health
- 3. Ecotoxicity and fate in the environment (plants, water, soil)
- 4. Good phytosanitary practices

Practical work :

- TP1: Diagnosis and identification of species
- TP2:Calculating the concentration of a chemical

Personal work :presentations, output report, bibliographic research

Evaluation method:A medium-length exam. The general average of the module will be calculated on two grades (EMD, TP)

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UEF: Title of the subject: Water and soil management in oasis environments Credits: 4 Coefficients:2

Teaching objectives a first part is intended for the study of climate characterization parameters as well as the processes involved for reasoned water management. Asecond part is devoted to theto characterize the soils of oasis environments and highlight the mechanisms for better land restoration.

Recommended prior knowledge Content of the subject

A. Climate synthesis

- Climagram (Embergé)
- Caussen Ombrothermal Diagram
- Aridity index
- B. Water management

1/ Water requirements for crops

- Calculation of evapotranspiration
- Calculation of dose and frequency of irrigation
 - The total available water in soil (TAW)
 - The readily available water (RAW)
 - Irrigation management

2/ Water leaching

- Calculation of leaching frequency (IR)
- Calculation of the piezometric level of the water table

3/ Water drainage

- Notions on topography, slope
- Types of drain (open; buried; others)
- Agricultural drainage networks (tertiary; secondary; primary and natural outlet)

4/ Quality of irrigation water

- Risk of salinization
- Risk of alkalization
- Irrigation water class

Tutorials

- TD1: calculation of the ET reference
- TD2: Calculation of (TAW) and(RAW)
- Establishment of the Caussen Ombrothermal diagram

Practical work

- Outing to the oases of Ziban
- Outing to the oases of Oued Righ

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+TP+TD+personal work

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques

Semester: 1 Title of the UEF: Title of the subject:Biology of the date palm Credits: 4 Coefficients:2

Teaching objectives: The date palm constitutes the main crop of the oases; it creates a special microclimate in an arid environment for the introduction of underlying crops. The module is devoted to botanical characterization and describing the main components of the date palm.

Prior knowledge recommended (*brief description of the knowledge required to be able to follow this course – Maximum 2 lines*).

Content of the subject

- 1. General information on Palmaceae
 - Plant biosystematics
 - Distribution areas
 - Basic notions of agri-food valorization

2. Biological characteristics of the date palm

- a. Root system
 - Respiratory root (auxirhyzes)
 - Root nutrition (mesorhyses)
 - Absorption root (brachyrhyza)

b. Vegetative apparatus

- Trunk or stipe
- Buds
- Crown or foliage
- Fins

c. Reproduction device

1-Inflorescences

- Male inflorescences
- Female inflorescences

2-Fruits

3-Evolution and formation of the date

• Unfertilized flowers

• Fertilized flowers

4-Phenological stages of dates

Loulou - Khlel - B'ser - Martouba - T'mar

3. Annual cycle of the date palm

- Vegetative rest
- Development of inflorescences
- Opening of the spathes
- Fruit setting
- Maturity of dates
- End of maturity

Practical work

TP.1: morphology of dates

TP.2: phenological stages of dates

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:A medium-length exam. The general average of the module will be calculated on two grades (EMD, TP).

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UEF: Title of the subject:Cultivation management of the date palm Credits: 4 Coefficients: 2

Teaching objectives The content of the module aims to help students learn all the production techniques applied during the vegetative cycle of the palm tree as well as the ways of maintaining palm groves.

Recommended prior knowledge

Content of the subject

1-Different types of oases in Algeria and their particularities

2Factors and distribution areas of the date palm

- Geographical distribution of the main cultivars in the Algerian oases
- types of climates
- soil typology
- altitude
- Topography

3 - Ecological requirements of the date palm

- Hygrometry
- Wind
- Precipitation
- Temperatures (of husk emergence, flowering, pollination, fruiting)
- Thermal index

4- Maintenance of the palm grove

- Weeding
- grooming
- collection of harvest waste

5 - production techniques

- Weaning
 - o Weaning techniques
 - o Classes of weaned suckers (unweaned suckers, djabars, rekkabs and gourmands)
 - o Weaning time
 - Planting
 - o Care of suckers before and after planting
 - o Setting up a nursery
 - o Planting suckers
 - o Planting time
 - o Conditions for a good recovery
 - o Planting density
 - o Planting system (Pits, trenches, "Daïr" basins)

- Fertilization
 - o Organic (Dose, time of application, types of organic manure (sheep, cattle, etc.)
 - o Mineral (nitrogen, phosphate and potassium fertilizers)
 - o Injection of fertilizers into the trunk of the palm tree
- Date palm irrigation
 - o Irrigation systems (localized, submersion, planks)
 - o Dose and rate of irrigation
 - o Advantages and disadvantages of each irrigation system
- Pollination
 - o Pollen collection
 - o Pollination time
 - o Manual, semi-mechanized and mechanized pollination
 - o Germination power
 - o Floral receptivity
 - o Pollen conservation
 - o Morphologies of the different Dokkar feet (male feet) used
- Limiting and chiseling
 - o -Number of regimes to eliminate for young levels
 - o Number of bunches to eliminate for adult palms
 - o Plant limitation factors (palm morphology, types of cultivars)
- General overview of date palm enemies
 - o Pests (examples: date moths, white mealybug, etc.)
 - o Diseases (Examples: fusarium wilt, khamedj, etc.)
 - o Others
- Bagging: -advantages of bagging Type of bagging materials Bagging period
- Harvest :
 - o Harvest period
 - o Harvesting techniques (manual harvesting, mechanized)

6-Constraints of phoeniciculture in Algeria

7-General notions about organic phoeniciculture

Personal work :report ofOutings: educational outing to the Ziban oases

Evaluation method:EMD1+EMD2+ output ratio

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester : Title of the EMU: Subject title: Biostatistics Credits: 3 Coefficients:2

Teaching objectives This unit aims to develop the conceptual understanding of biostatistics, through the application, underlying assumptions, and interpretation of statistical analyzes presented with the assistance of computer interfaces and software.

Prior knowledge recommended (*brief description of the knowledge required to be able to follow this course – Maximum 2 lines*).

Content of the subject

Chapter 1: describe, explore and compare data

(Revision on descriptive statistics studied in S1 and S3, return to basic statistical vocabulary, observe, understand, analyze, decide)

Chapter 2: Know the distribution laws

- Represent a distribution
- Use the normal distribution
- Use the binomial law
- Use Poisson's law
- Understanding Correlation

Chapter 3: Sampling

- Sampling procedure
- Estimate in a population a parameter measured in a sample

Chapter 4: comparing statistical data

- Understand the principles of statistical testing
- Establish statistical test hypotheses
- Interpreting a test: the little p
- Prepare the calculation of a statistical test
- Compare two percentages compare two averages
- Compare multiple distributions
- Compare multiple averages
- Test a correlation

Tutorials

The ultimate objective of the tutorial sessions is to help the student master computer statistics by mastering the main software in the subject.

Main applications will rely on: MS.EXCEL, SPSS and STATISTICA.

TD1Descriptive statistics and sampling (calculations, graphics and random sampling); **TD2**ANOVA and other statistical tests

TD3Linear regression and correlation **TD4**Multivariate analysis.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+TD+personal work.

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques OASIAN PRODUCTION SYSTEMS

(fodder farming – arboriculture – plastic farming)

Objective :This teaching unit is made up of four modules (Plasticulture (cereal farming; fodder cropsand arboriculture).It aims to explain to students the technical itinerary of the different crops grown under the date palm as well as the impact of agricultural changes on the sustainability of the practice of phoeniciculture.

Module evaluation mode EMD rating = EMD1+EMD2+EMD3+EMD4

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UEM: Methodology Title of the subject: Oasis production systems 1: Cereal farming Credits: 2 Coefficients: 1

Teaching objectives Recommended prior knowledge

Content of the subject

I. GENERAL.

- Economic data, production, surface areas, yields, consumption needs.
- Use and composition of grain.

II. MORPHOLOGICAL CHARACTERS.

- The vegetative system.
- The reproductive system.

III. BIOLOGICAL CHARACTERS.

- Description of the development cycle.
- Vegetative period.
- Reproductive period.
- Maturation period.
- Developmental physiology.
- Maturation period.

IV. CULTURE.

- 1. Choice of cultivation system.
- 2. Varieties grown in Algeria.
- 3. cereals in the oases
 - Nature of soils.
 - Ground work.
 - Sowing.
 - Water (irrigation).
 - Fertilizing elements (fertilization).

- Protection against diseases, pests and weed control.
- The harvest.
- Cereal processing

V. GENETIC IMPROVEMENT.

- Reproductive regimes.
- Selection programs.
- Seed production.

B/ PRACTICAL WORK

- TP 01: Study of seeds and the vegetative stage of winter cereals.
- TP 02: Study of the reproductive stage of winter cereals.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ TP note+ personal work

Evaluation method:

- A test of medium duration.
- TP report

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UEM: Methodology Title of the subject: Oasis production systems 2: Fodder cultivation Credits: 2

Coefficients: 1

Content of the subject

I. General

A - Main sources of fodder.

- 1. The prairies
 - 1.1. permanent meadow
 - 1.2. Temporary meadows
- 2. Annual forage

3.co-product of palm as livestock feed

B - Operation and maintenance of meadows

- 1. Pasture
- 2. Mowing
- 3. Fertilization
- 4. Cultivation methods
- 5. Destruction of weeds.
- 6. Clearing the meadow
- II. Main forage species
 - Forage grasses.
 - **Barley**:

1.

- □ Ray Gras from Italy (Loliummultiflorum)
- □ **Tall fescue**(Festucaelation)
- □ Corn (Zeamays)
- □ **Sorghum**(Sorghum vulgare)
- 2. Forage legumes
 - □ **Bersim**(Trifolium alexandrium
 - Perennial alfalfa(Medicagosativa)
 - Annual Alfalfa(Medicagosp.)
 - □ **Clover**(Trifolium fragiferum)
- 3. Trees and shrubs
 - □ Date palm
 - □ **G'taf(AtriplexSp.)**(Chenopodiaceae)
 - □ Alfalfa shrub(Medicagoarborea

 - □ Atlas pistachio tree(Pistaciaatlentica)
 - Acacia (Acacia sp.)
 - □ **Unarmed cactus**(without thorns)
- 4. Other families.
 - Fodder beet(Beta vulgaris);
- **Fodder cabbage** (*Brassicaoleracea*);
- □ **Foraged rapeseed**(Brassicanapus);
- **Foraged turnip**(Brassicacampestris);
- □ **White mustard**(Sinapis alba;
- □ **Jerusalem artichoke**(Helianthustuberosus).
- III. Conservation of fodder.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:Course: 1 EMD+ PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the EMU: Title of the subject:Geomatics Credits: 2 Coefficients: 1

Teaching objectives This involves the application of knowledge relating to the soil and the physical environment to define better land allocation through the use of the geographic information system.

Recommended prior knowledge Content of the subject

HAS. COURSE

CHAPTER I: GENERAL PRINCIPLES

1- Goals

2- Land use planningCHAPTER II:

RESOURCES

1- Natural resources

2- Socio-economic resources

CHAPTER III: EVALUATION METHODS

- 1- In rainfed agriculture
- 2- In irrigated agriculture
- **3-** Other uses

CHAPTER IV: INTRODUCTION TO GIS

- 1- Historical
- 2- Goals
- 3- The concepts

CHAPTER V: THE MAIN FUNCTIONS OF A GIS

- 1- Data acquisition
- 2- Data preparation
- **3-** Data entry and updating
- 4- Data processing/analytical mapping
- 5- Data output

CHAPTER VI: PRESENTATION OF ARC/INFO AND IDRISIW

- 1- The main functions of Arc/info and Idrisiw
- 2- Advantages and disadvantages

b. TUTORIALS

- Data preparation
- Introduction of graphic data and semantic data
- Cartographic analysis and printing of documents on screen and on paper

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:

Course: 1 EMD TD practical work Personal work

- Geographic information systems, power and organizations;Henri Pornon- 1998
- GIS The geographical dimension of the information system;Henri Pornon- 2011
- Geomatics and environmental management of the territory; IETI Consultants- 1998

Title of the Master: Phoeniciculture and date valorization techniques Semester : Title of the UED: Title of the subject:Oasis ecosystem Credits: 1 Coefficients: 1

Teaching objectives:Oases constitute unique ecosystems, rich in biotic and abiotic components. They define themselves as ecological entities of human design to ensure local socio-economic stability, and can suffer the most threatening impacts given their extreme vulnerability to socio-economic and environmental changes.

Recommended prior knowledgeThe module aims to deepen the analyzes and exchange of thoughts on the state of play and the main challenges and issues characterizing oasis ecosystems in terms of sustainable management, governance systems, risk assessment, resilience and adaptation to climate change

Content of the subject

1) Definition of oasis

- Traditional oasis
- Modern oasis

2) Definition of palm grove

- Traditional palm grove
- Modern palm grove

3-Components of an oasis

a-Biotic characteristic of an oasis

- Palm groves
- Intercropping
- Spontaneous plants (zygophyllaceae; salsolaceae; legumes, etc.)
- Medicinal plants (zygophyllum, mugwort, rosemary, others)
- Fauna (birds; reptiles; rodents; arthropods, etc.)

b-Abiotic characteristics

- Climate
- Soil type
- Drainage
- Topography
- Savory Depression
- others

3) Examples of the Physiognomy of the Algerian palm grove

- Ziban palm grove Oued Righ palm grove
- Nemamcha palm grove M'zab palm grove

4) Criteria for creating a modern oasis

A. On the vegetative level

- Choice of a varietal profile
- Choice of associated crops
- Choice of cultivation systems (stratified, polycultures) *B. Land development*
- Soil type
- Drainage
- Silting
- Irrigation systems
- Soil depth
- Others

5-Ecological problems of oases

- Silting
- Salinization
- Rising water
- Clearing
- Agricultural changes
- others

6-Sustainable development of oases

- Water management
- Desalination
- Organic fertilization
- Rationale for pesticide use
- Organic Agriculture
- Others

Personal work :

Evaluation method:1EMD + PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester: 1 Title of the UET: Subject title: Communication Credits: 2 Coefficients:2

Teaching objectives Exploitation of English scientific documents and deepen the student's knowledge of production and protection techniques in English.

Recommended prior knowledgeEnglish, IT

Content of the subject

- 1 introduction
- 2 botany
- 3 varieties and country of origin
- 4 uses and contents
- 5 aspect of plant cultivation
 - 5.1 site requirements
 - 5.2 seeds and seedling
 - 5.3 Methods of planting
 - 5.4 Diversification strategies
 - 5.5 Nutrient and organic fertilization management
- 6 Biological method of plant protection
 - 6.1 diseases
 - 6.2 pests
 - 6.3 rodents
- 7 crop monitoring and maintenance
- 8 harvesting and post harvesting treatment

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method: A medium-length exam, with a grade from the EMD

S2

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 Title of the UEF: Title of the subject:Cultivation management of date palm 2 Credits: 4 Coefficients:2

Teaching objectives The content of the module aims to help students learn all the production techniques applied during the vegetative cycle of the palm tree as well as the ways of maintaining palm groves.

Recommended prior knowledge

Content of the subject

1. -Date palm distribution areas

2 - Ecological requirements

- Hygrometry
- Wind
- Precipitation
- Temperatures (emergence of husks, flowering, pollination)
- Thermal index

3 – Maintenance of the palm grove

- Weeding
- grooming
- collection of harvest waste

4 - production techniques

- Weaning
 - o Weaning techniques
 - o Classes of weaned suckers (unweaned suckers, djabars, rekkabs and gourmands)
 - o Weaning time
- Planting
 - o Care of suckers before and after planting
 - o Setting up a nursery
 - o Planting suckers
 - o Planting time
 - o Conditions for a good recovery
 - o Planting density
 - o Planting system (Pits, trenches, "Daïr" basins)
- Fertilization
 - o Organic
 - o Mineral
 - o Fertigation

- Irrigation
 - o Irrigation systems (localized, submersion, planks)
 - o Calculation of the irrigation dose (ETP, ETR, RU; RFU)
 - o Calculation of the salt leaching dose
- Pollination
 - o Pollen collection
 - o Pollination time
 - o Manual, semi-mechanized and mechanized pollination
 - o Germination power
 - o Floral receptivity
 - o Pollen conservation
 - Limiting and chiseling
- Enemies of the date palm
 - o Pests (examples: date moths, white mealybug, etc.)
 - o Diseases (Examples: fusarium wilt, khamedj, etc.)
 - o Others
- Bagging

- o Type of bagging materials
- o Bagging period
- Harvest
 - o Harvest period
 - o Harvesting techniques

5-Constraints of Algerian phoeniciculture

6 - general notions about organic phoeniciculture

<u>Exits :</u>

• Outing: educational outing to the oases of Oued Righ

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD + PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 Title of the UEF: Title of the subject:Integrated conservation of date palm plant genetic resources Credits: 4 Coefficients:2

Teaching objectives Allow the student to know the important role of date palm plant genetic resources in evolution and sustainable development. To feel the need for the conservation of this Phoenicicultural heritage by using different methods, particularly biotechnological. There is no better conservation than to promote PD RPGs after characterization and evaluation of the different cultivars. The student will learn through morphological, biochemical and molecular indicators to better understand the biodiversity of the PD.

Recommended prior knowledgeThe student must have basic knowledge of botany, genetics, molecular biology and statistics.

Content of the subject

- 1. Concept and issues
- 2. Status of date palm RPGs
- 3. Genetic erosion
- 4. PD RPG
 - 4.1. In the world
 - 4.2. In Algeria
- 5. Biotechnology approaches to conservation of PD PGRs
 - 5.1. Concepts and context
 - 5.2. Integration of biotechnologies into PD PGR conservation programs
 - 5.3. Role of biotechnology in the sustainable use of DP PGRs
 - 5.4. Conservation
 - 5.4.1. In situ
 - 5.4.2. Ex situ
 - 5.4.3. Static and dynamic
 - 5.5. RPG Acquisition Procedures
 - 5.5.1. Exploration
 - 5.5.2. Exchange
 - 5.6. Methods of acquisition
 - 5.6.1. Grains
 - 5.6.2. Vegetative propagation
- 6. Characterization and evaluation of PD RPGs
 - 6.1. Natural variation
 - 6.2. Relationship, evaluation and characterization of PD RPGs
 - 6.2.1. Morphological approach
 - 6.2.2. Biochemical approach
 - 6.2.3. Cytological approach

6.2.4. Molecular approach

6.2.4.1. Introduction

6.2.4.2. Case study: date palm biodiversity revealed by SSR molecular markers.

Practical work

TP 1: morphological characterization of the palm.

TP 2: morphological characterization of the inflorescence

A field trip

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method: EMD+TP+PERSONAL WORK.

References (Books and handouts, websites, etc.).

- HARRIT, MM, 1991, Ecology and genetic variation of four hardwoods of Brazil's Atlantic Forest region, PhD thesis, North Carolina State University, USA. Regeneration (somatic embryogenesis from the organism to the molecule

Improvement of cultivated plant species (objectives and selection criteria) ASSY-BAH, B. and ENGELMANN, F., 1992b, Cryopreservation of mature embryos of coconut (Cocosnucifera L.) and subsequent regeneration of plantlets, Cryo-Letters,

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 Title of the UEF: Title of the subject:Water and soil management in an oasis environment 2 Credits: 6 Coefficients: 3

Teaching objectives a first part is intended for the study of climate characterization parameters and the study of water needs for reasoned water management. Asecond part is devoted to theto characterize the soils of oasis environments and highlight the mechanisms for better land restoration.

Recommended prior knowledge

Content of the subject

Soil management

- 1- Characterization of soils in oasis environments
 - Salty soils
 - Limestone soils
 - Gypsum soils
 - Alluvial soils
 - Sandy soils
 - others

2- Sustainable management of oasis soils

- Leaching of salts
- Organic contributions
- Salt-tolerant crop practices
- Gypsum intake
- Choice of crops
- others
- Establishment of the Caussen Ombrothermal diagram
- Classification of soil water

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation methodEMD+TD+PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 EU Title: F Title of the subject:Date palm diseases Credits: 4 Coefficients:2

Teaching objectives The objectives sought through this module are multiple:

- To provide the student with a theoretical basis for the different types of date palm diseases;
- Have the student learn to observe the symptoms in situ to avoid probable confusion
- To carry out a clinical examination and establish a diagnosis of a disease in the field.

Recommended prior knowledge

- 1- Anatomical and morphological characteristics of mushrooms
- 2- Host-parasite relationships, reproduction and survival of parasites.

Content of the subject

I - CRYPTOGAMIC DISEASES

1-THE BAYOUD

- a) General
- b) Origin and geographical extensions
- c) Economic importance
- d) Symptoms
- e) Causal agent
- f) Means of struggle

2-The Khamedj

- a) General
- b) Geographical distribution
- c) Economic importance
- d) Symptoms
- e) Causal agent
- f) Means of struggle
- 3-Dipolodia disease
 - a) General
 - b) Geographical distribution
 - c) Economic importance
 - d) Symptoms
 - e) Causal agent
 - f) Struggle

4-Root rot

- a) Geographical distribution
- b) Economic importance
- c) Symptoms
- d) Causal agent
- e) Struggle

II - Bacterial and phytoplasma diseases

5-"LethalYellowing"

- a) Geographical distribution
- b) Economic importance
- c) Symptoms
- d) Causal agent
- e) Struggle

III - Non-parasitic diseases

11-BLacknose

- a) Geographical distribution
- b) Symptoms
- c) Struggle

12-Crosscuts

- a) Geographical distribution
- b) Symptoms
- c) Struggle

$\mathrm{IV}-\mathrm{Undetermined}$ diseases

13-The disease of the "leaning heart"

- a) Geographical distribution
- b) Symptoms
- c) Causal agent
- d) Struggle

14-Al Wijam

- a) Geographical distribution
- b) Symptoms
- c) Causal agent
- d) Struggle

Practical work

TP1:Observation and identification of phytopathogenic fungi under a microscope.

TP2:Determination of spore concentration by counting cells.

TP2:Isolation by the single-spore subculturing technique.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ TP+ PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester : Title of the EMU: Title of the subject: oasis production systems 3: Arboriculture Credits: 3 Coefficients:2

Content of the subject

- 1. General
 - a. Life cycle
 - Annual life cycle
 - Evolutionary life cycle
 - b. Biology of a fruit tree
 - Root system
 - Trunk
 - Leaf
 - Flower
 - Fruit
- 2. Necessary conditions for creating a nursery
- 3. Different multiplication methods

a/ Sexual multiplication

• Sowing

b/ Asexual multiplication

- Dogging
- Layering
- 4. Crop calendar
 - Olive growing Fig tree Viticulture
 - Others (Citrus, Pomegranate, Apricot, etc.)
 - Production alternation phenomena
- 5. Laydown maintenance techniques

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD + PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester : EU title: Methodology Title of the subject: oasis production systems 4: plasticulture Credits: 4 Coefficients:2

Teaching objectives(Describe what skills the student is supposed to have acquired after passing this subject – maximum 3 lines).

Prior knowledge recommended (*brief description of the knowledge required to be able to follow this course – Maximum 2 lines*).

Content of the subject

1. General

A -History on the introduction of plasticulture in oases

B -Different types of greenhouse

- Plastic greenhouses (tunnel, caterpillar greenhouse, multichapel and canary greenhouse)
- Glass greenhouses
- C -Techniques for installing a greenhouse
- 2. -Creation of a nursery

3. Cultivation management in greenhouses

- Tomato
- Chili and pepper
- Eggplant
- Cucumber
- Zucchini
- Melon and watermelon

4. Other crops

- The cultivation of Henna
- The culture of Corete
- Okra culture

5. Place and sustainability of plasticulture in an oasis environment

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ Output report + OTHERS

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 Title of the EMU: Title of the subject:Animal production in an oasis environment Credits: 1 Coefficients: 1

Teaching objectives The intensification of agricultural production in oases necessarily requires an agriculture-livestock association, both for a better balance of family microfarms and for an increase and maintenance of soil fertility. The objective of this unit is to analyze the interactions that may exist between plant and animal production operations in a particular environment, the oasis environment.

Recommended prior knowledge

Content of the subject

Introduction

- 1. The oasis concept
- 2. Current situation in Algeria
- 3. Role and function of livestock, the different associations in the oasis
- 4. Agricultural production in the oases
 - 4.1 Production and quality of fodder
 - 4.1.1 Others
- 5. Livestock production
 - 5.1 Goat breeding
 - 5.2 Sheep breeding
 - 5.3 Camel breeding
 - 5.4 Cattle breeding
 - 5.5 Small farms
- 6. Example of intensive breeding in oases: the D'Mane sheep.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:- EMD+ Output report to be exposed + OTHERS

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester: 2 Title of the UED:

Semester: 2 Title of the UET: Title of the subject:Introduction to modeling Credits: 2 Coefficients:2

Teaching objectives The objective is to lead the student to take into account a growing number of parameters whose need for integration is evident. To describe not only the plant and its biophysical environment, but also less predictable or quantifiable parameters. The student, through this tool which is modeling which makes it possible to process this mass of information, will be able to both understand the functioning of soil-plant-climate systems and design and evaluate new cropping systems which would be impossible to implement. point through experimentation.

Recommended prior knowledgeThe student must have basic knowledge of biology, mathematics, computer science and statistics.

Content of the subject

Introduction to modeling

- 1.1. General concepts of modeling
- 1.2. Types of models:
 - a) Mechanistic,
 - b) stochastic,
 - c) empirical
- 1.3. Construction of crop models
- 1.4. Database, Calibration, validation, simulation
- 1.5. Example of simple and complex models in agronomy
- 1.6. Application of modeling in agriculture
- 2. Use of regionalized variables in biology
- 3. Software suites applied to plant growth, development and architecture and epidemiology.

Practical work

- TP1: handling of IT tools and Excel software.
- TP2: example of application of an agronomic model.

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+TP+PERSONAL WORK

- Arora, VK and PR Gajri (1998). "Evaluation of a crop growth-water balance model for analyzing wheat responses to climate- and water-limited environments." Field Crops Research 59(3): 213-224.
- Barbottin, A. (2004). Use of a crop model to evaluate the behavior of genotypes: Relevance of the use of Azodyn to analyze the variability of yield and protein content of soft wheat. UMR Agronomy INRA/AgroParisTech. Paris, AgroParisTech. Doctoral thesis.
- Béguin, P. and A. Weill-Fassina (1997). From the simulation of work situations to the simulation situation. simulation in ergonolue: know, act, interact. P. Béguin and A. Weill-Fassina. Toulouse, Octarès: 5-28.
- d'Aquino, P., M. Etienne, O. Barreteau, C. Le Page and F. Bousquet (2001). Support modeling: the use of multi-agent simulations in decision-making processes on the management of natural resources. Modeling of agroecosystems and decision support. E. Malézieux, G. Trébuil and M. Jaegger, CIRAD / INRA: 373-390.

Title of the Master: Phoeniciculture and date valorization techniques Semester: S2 EU Title:Transverse Title of the subject:<u>Legislation</u> Credits: 01 Coefficients: 01

Teaching objectives: The course will mainly focus on environmental regulations in Algeria

Recommended prior knowledge:

Law, environment, legislation.

Content of the material:

- 1. General introduction.
- 1.1. Overview of all the legislation in this area.
- 1.2. Application of environmental law.
- 1.3. Citizen participation.
- 2. The main legal instruments.
- 2.1. Plans in land use planning.
- 2.2. Limited interference and emission values.
- 2.3. Impact studies: procedure and legal consequences.
- 2.4. Inventories: protected landscapes, sites and biotopes.
- 3. National regulations.
- 3.1. The environmental code.
- 3.2. Decrees and application circulars.
- 4. The laws of conservation and classification on the scale of the biosphere.

Personal work :Seminar, outing (National parks: Tonga El-Kala, Belezma Batna)

Mevaluation code:examination, continuous monitoring Rreference:

S3

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the UEF: Title of the subject:Technological valorization of dates Credits: 4 Coefficients:2

Teaching objectives Allow the student to have fundamental knowledge of the different applicationstechnological in the field of date processing and to acquire the basic techniques for determining the quality criteria of dates.

Recommended prior knowledge

Content of the subject

- 1-traditional valorization of dates
 - Date flour
 - robs

2-Date packaging technologies

- 2-1-Disinsection
- 2-2-Storage
- 2-3-Sorting
- 2-4-Conditioning

3-Date quality criteria

3-1-Physical criteria

- Dimension
- Color
- Density
- Consistency

3-2-Biochemical criteria

- pH
- acidity
- Sugar
- Humidity
- Ash
- Brix quality index

3-3-Microbiological criteria

• Bacterial and fungal flora

3-4-Sensory criteria

- tastes
- Smell
- Color
- Texture
- Taste test

4-factors of production

- Mineral nutrition
- Bagging
- Phytosanitary treatment
- Harvest
- Storage

5-Date processing technologies

- 1. Sugar
 - Washing
 - Triage
 - Pitting
 - Hot extraction
 - Purification
 - Filtration
 - Concentration
 - Syrup

2. Alcohol

- Production of saccharomyces cervisiae in Fed-Batch
- Alcoholic fermentation
- Alcohol production itself

3. Vinegar

- Batch fermentation
- Continuous fermentation
- 4. Honey
 - Reception
 - Control
 - Storage
 - Juicing
 - Clarification and decolorization of juice
- 5. Dough, jam, pastry, others
- 6. pharmaceutical products.

Practical work

- **TP1:**pH measurement; acidity
- **TP2:**measurement of total and reducing sugars
- TP3:ash and mineral salts

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+TP+PERSONAL WORK

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the UEF: Title of the subject:Modeling of the architecture of the Date Palm

Credits: 4 Coefficients:2

Teaching objectives Allow the student to get even closer to the date palm, observe it and measure its morphological markers down to the smallest details and identify the different relationships linking them. This would subsequently allow it to better distinguish the different cultivars, or even determine the main selection traits over time for quality cultivars in arid environments..

Recommended prior knowledgeThe student must have basic knowledge of biology, mathematics, computer science and statistics.

Content of the subject

- 1. Usefulness and application of plant architecture and growth modeling:
- 2. General information on plant architecture:
- 3. Architectural models according to Hallé, Oldeman and Edelin:
- 4. Phyllotaxis, parasitic parasites on the date palm
- 5. Descriptors of the palm, vein and pinnae
- 6. Descriptors of male and female inflorescences
- 7. Root observation methods
- 8. Transformation of aerial vegetative archiving data and use of the PRINCIPLES model
- 9. Transformation of arch reproductive data and use of the PRINCIPLES model
- 10. Digitization and transformation of arch root data and use of the DigR TP model

Practical work :

- 1. Descriptors of the vegetative part
- 2. Descriptors of the inflorescence part
- 3. Phyllotaxis
- 4. Transformation of aerial vegetative archiving data and use of the PRINCIPLES model
- 5. Transformation of arch reproductive data and use of the PRINCIPLES model
- 6. Digitization and transformation of arch root data and use of the DigR TP model

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ TP+ PERSONAL WORK.

References (Books and handouts, websites, etc.).

El Houmaizi MA, 2002. Modeling the architecture of the date palm (phoenix dactylifera L.) and application to the simulation of the radiation balance in oases. Final thesis postgraduate study, Cadi-Ayyad University, Marrakech in Morocco;

Halle F. and Oldeman R A., 1970. Essay on the architecture and growth dynamics of tropical trees. Paris, Masson 178p;

Barthelemy D. and Caraglio Y., 2007. "Plant Architecture": A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny", Annals of Botany, 99:375-407;

LECOUSTRE R. and JEAGER M. 1989. Modeling of architecture and geometry by Elaeis Guineensis.

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the UEF: Title of the subject:Plant biotechnologies and molecular tools Applied to Date Palm

Credits: 6 Coefficients: 3

Teaching objectives Allow the student to have fundamental knowledge on the different applications of plant biotechnologies and the use of molecular tools in date palm improvement. And this according to the research objectives determined in response to the problems proposed, in particular by socio-economic partners.

Recommended prior knowledgeThe student must have basic knowledge of cell biology, genetics and basic molecular biology of the date palm.

Content of the subject

Chapter I: General

- 1. Reminder of the main attempts at genetic improvement of PD around the world
- 2. State of play on the genetic improvement of the date palm.
- 3. Constraints and challenges of genetic improvement of DP
- 4. Objectives of PD improvement
- 5. Genetics and improvement of PD

Chapter II: Biotechnologies applied to PD

- 6. DP biotechnologies
 - 6.1. Tissue culture
 - 6.2. Micropropagation
 - 6.2.1. Via somatic embryogenesis
 - 6.2.2. Via Organogenesis
 - 6.2.3. Using inflorescence explants
 - 6.3. Somaclonal variation
 - 6.4. Cell and protoplast culture
- 7. Case study: In Vitro Selection for resistance to abiotic stress

Chapter III: Molecular markers

- 8. Molecular markers:
 - 8.1. Molecular detection of somaclonal variation
 - 8.2. Molecular markers for Bayoud resistance
 - 8.3. Molecular detection of somaclonal variation

Tutorials

TD1:Molecular detection of somaclonal variation

TD2:Molecular detection of somaclonal variation

Evaluation method: EMD+TD+TARAVIL STAFF.

- Biotechnology
- Regeneration (somatic embryogenesis from the organism to the molecule
- Improvement of cultivated plant species (objectives and selection criteria)
- GUERRA, MP and HANDRO, W., 1991, Somatic embryogenesis in tissue cultures of Euterpeedulis Mart. (Palmae), in AHUYA, R. (Ed.), Woody Plant Biotechnology, pp. 189–196, New York: Plenum Press.
- VIANA, AM and MANTELL, SH, 1998, Somatic embryogenesis of Ocoteacatharinensisanendangered tree of the Mata Atlântica (S.Brazil), in JAIN, MJ, GUPTA, PK and NEWTON, RJ (Eds), Somatic Embryogenesis in Woody Plants, Volume 4, Dordrecht: Kluwer AcademicPublishers.

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the UEF: Title of the subject:Conservation and packaging of dates

Credits: 4 Coefficients:2

Teaching objectives This course allows the student to know the classic and artificial cold preservation methods., the technical route of packaging, the influence of storage conditions on the development of pathogens and micro-organisms and consequently on the alteration of the quality of dates and the criteria to be learned for the standardization of dates.

Recommended prior knowledgePathogens - stock pests - storage system

Content of the subject

Chapter No. 1: storage and preservation

I. Methods for storing dates

- 1. Classic conservation methods
- 2. Preservation methods using artificial cold
 - a/ Conservation in a cold room with a normal atmosphere
 - b/ Conservation in a controlled atmosphere cold room
 - c/ Role of cold for conservation

II. Processing and packaging of dates

1.Storage

- Insecticide treatment
- **.2**. Sorting and calibration
 - Trendy dates
 - Date in bulk and good quality
 - Second quality date
- **3.**Cleaning
- 4.Disinfestation

5.Drying and rewetting

6.Drying

Fumigation with methyl bromide

7. Packaging and filling

- -Types of Packaging
 - 1. Trays (small boxes)
 - 2. Boxes and crates
 - 3. Special paper bags (bulk dates)
 - 4. Boxes and cartons (15-20 kg)
 - 5. Bag

8. Storage

9-Marking

Chapter No. 2: Effects of conservation on the quality of dates

I. Factors degrading the quality of dates

- a/ Elemental deficiencies
- b/ Attacks by insects and diseases
- c/ Poor storage conditions
- d/ Alternations of storage temperatures

2. Alteration of the quality of dates

- a/ Physical alteration
 - b/ Chemical alteration
 - c/ Biochemical alteration
 - Enzymatic browning
 - Non-enzymatic browning

d/ Microbiological alteration

- Yeast
- Mold
- Bacterium

e/ Parasitic alteration

Chapter No. 3: Standardization of dates

1-Commercial quality of fruits

- Fruit shape and appearance
- Fruit size
- The degree of maturity
- The extent of the damage

2-The quality of packaging

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others. **Evaluation method:**EMD, output report

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the EMU: Title of the subject:Innovation in an oasis environment

Credits: 3 Coefficients:2

Teaching objectives

Prior knowledge recommended (*brief description of the knowledge required to be able to follow this course – Maximum 2 lines).*

Content of the subject

Chapter 1: Innovation and sustainable development (Definition, importance, types, link to innovation and SD, etc.)

Chapter 2: Theoretical foundation of innovation (Theoretical framework relating to the diffusion of innovations)

Chapter 3: Agricultural policy and innovation:

How to promote innovation in agriculture?

(Case of extension and subsidies).

Chapter 4: Case studies: Analysis of the main types of innovations influencing oasis production systems

- Technological innovation :
 - Participatory inventory of innovations in an oasis territory
 - localized drip irrigation
 - the challenges of mechanization in phoeniciculture
- Institutional innovation:
 - Geographical indication (GI) of the Deglet-Nour date from Tolga
 - Innovation and oasis agro-tourism (territorial marketing, etc.)

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ TD+ PERSONAL WORK.

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the EMU: Title of the subject:Instrumental analysis

Credits: 4 Coefficients:2

Teaching objectivesTo understand the physicochemical phenomena which constitute the basis of chromatography (liquid and gas) and electrophoresis to develop analytical methods using chromatography (GC, HPLC) to use the main techniques independently of instrumental analysis.

Recommended prior knowledgeSome notions of physics and chemistry.

Content of the subject

- 1 pH meter
- 2 Conductivity meter
- 3 Calorimeter and spectrophotometer
- 4 Flame and atomic absorption photometer
- 5 Auto analyzer
- 6. Others

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:

- Course: Number of EMD: 1
- Practical and/or supervised work
- -PERSONAL WORK

References (Books and handouts, websites, etc.).

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3

Title of the EMU: Title of the subject:bibliographic search

Credits: 2 Coefficients: 1

Teaching objectives This module allows the student to acquire the basic notions of bibliographic research and to communicate the content of their final dissertation in a written and oral manner.

Recommended prior knowledgeFrench English, IT, Powerpoint,

Content of the subject

1. MODULE CONTENT A. COURSE

CHAPTER I: BIBLIOGRAPHICAL RESEARCH

1-Methodological approach 2- Information dissemination media and channels

CHAPTER II: WRITING

- 1- of a memoir
- 2- of an article

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:EMD+ PERSONAL WORK

- Introduction to Research Methodology: Practical Guide; Mounir M. Touré-2007
- Summary of research methods and experimental research;Louis Laurencelle– 2005
- Thesis and dissertation methodology;Sophie Boutillier,Alban Goguel d'Allondans,Dimitri Uzunidis- 2005

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 Title of the UED: Title of the subject:Organic Agriculture Credits: 2 Coefficients:2

Teaching objectives Know the main elements of the regulations that apply to organic farming. Know the economic issues and conditions of its development. Know the contributions of organic farming on the different aspects of product quality. Enable students to analyze the technical, economic and social implications, the advantages and difficulties of this development of organic agriculture, to identify the conditions for success and reflect on proposals on concrete cases.

Prior knowledge recommended (*brief description of the knowledge required to be able to follow this course – Maximum 2 lines).*

Content of the subject

Introduction -The concept of sustainable development -Use of phytosanitary products in agriculture -History and definitions of organic farming **Chapter I: Interest in organic farming** Section1: ecological motivations Section2: socio-economic motivation Section3: nutritional motivations Chapter II: objectives and principles of organic farming Section1: objectives of organic farming Section2: principles of organic farming Chapter III: management of organic farming Section1: conversion to organic farming Section2: fertilization in organic farming Section 3: pest control in organic farming Section 4: irrigation water management

Evaluation method: EMD + PERSONAL WORK

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others.

Evaluation method:knowledge checks and continuous checks (EMD, TP) + PERSONAL WORK.

References (Books and handouts, websites, etc.).

- Conversion to organic farming

- Organic market gardening
- Sustainable development of urban agriculture in French-speaking Africa (issues, concepts and methods

Title of the Master: Phoeniciculture and date valorization techniques Semester: 3 EU Title:Transverse Subject title: Entrepreneurship and project management

Subject title: Entrepreneurship and project management Credits: 1 Coefficients: 1

Teaching objectives

The objective in Entrepreneurship is therefore to offer students a global vision of the different facets of entrepreneurship, its challenges, its risks and its characteristics.

Recommended prior knowledge

Management, Economics-statistics

Chapter 1: The notion of entrepreneur and entrepreneurship

Definition of Entrepreneurship Entrepreneur characteristics:

Entrepreneurship in the economy

GEM Case Studies

Chapter 2: The entrepreneurial approach

What is an opportunity? Innovation Why innovate and the obstacles to innovation Key drivers of innovation Market analysis

Chapter 3: The evolution of the company

The growth The internationalization of the company

Chapter 4: Idea, creation, development and after?

The transmission Recovery

Failure and second chances

Chapter 5: The business plan and partners

The Business Plan

The partners

Analysis of an entrepreneurial theme with groups of students

Personal work : it can be: Presentations, reports, bibliographic research, surveys, essays, others. -Analysis of an accounting balance sheet- Preparation of technical sheets –

Calculates costs and cost prices and margins

Concept of yield and productivity and value

Mevaluation code:continuous assessment + examination + PERSONAL WORK **References**

Entrepreneurship, Michel Coster, Pearson Education, 2009 Soparnot R.,2012-Business organization and management Collection: Les Topos, Dunod - 2nd edition - 128 p.Soparnot R.,2009-Business management, Strategy. Structure. Organization.
V- Agreements or conventions

Yes

NO

(If yes, transmit the agreements and/or conventions in the paper training file)

STANDARD LETTER OF INTENT

(In the case of a master's degree co-sponsored by another university establishment)

(Official paper on the header of the university establishment concerned)

Subject: Approval of co-sponsorship of the master's degree entitled:

The university (or university center) hereby declares that it co-sponsors the above-mentioned master's degree throughout the accreditation period of this master's degree.

To this end, the university (or university center) will assist this project by:

- Giving his point of view in the development and updating of teaching programs,
- Participating in seminars organized for this purpose,
- By participating in defense juries,
- By working to pool human and material resources.

SIGNATURE of the legally authorized person:

FUNCTION :

Date :

STANDARD LETTER OF INTENT

(In the case of a master's degree in collaboration with a company in the user sector)

(Official company letterhead)

OBJECT : Approval of the project to launch a master's degree course entitled:

Dispensed to:

The company hereby declares its willingness to demonstrate its support for this training as a potential user of the product.

To this end, we confirm our support for this project and our role will consist of:

- Give our point of view in the development and updating of educational programs,
- Participate in seminars organized for this purpose,
- Participate in defense juries,
- Facilitate as much as possible the reception of interns either as part of end-of-study theses or as part of tutored projects.

The means necessary to carry out the tasks incumbent on us to achieve these objectives will be implemented on a material and human level.

Mr. (or Madam).....is designated as external coordinator of this project.

SIGNATURE of the legally authorized person:

FUNCTION :

Date :

OFFICIAL STAMP or COMPANY SEAL